

Les défis de l'anticoagulation en rythmologie Modération : Dr Maxime Guenoun (Marseille)

Prise en charge précoce de la fibrillation atriale : pour qui ? Comment ? Pr Jean Claude Deharo (Marseille)

> Traitement de l'anticoagulation : traitement à vie ? Pr Laurent Fauchier (Tours)

Prise en charge précoce de la fibrillation atriale

Les défis de l'anticoagulation en rythmologie

Jean-Claude Deharo

Aix*Marseille

Liens d'intérêt

• Liens d'intérêt :

Honoraires pour présentations à des congrès; bourses de recherche

- Abbott
- Medtronic
- Boston Scientific
- Biotronik
- Bewys
- Viatris
- Bayer
- BMS Pfizer

Silent (subclinical) AF

- AHRE confirmed to be AF, AFL, or an AT, or
- AF episodes detected by:
 - insertable cardiac monitor or
 - wearable monitor

and confirmed by visually reviewed intracardiac electrograms or ECG-recorded rhythm.

From AF ESC guidelines 2020

POSITION PAPER

EHRA practical guide

How to use digital devices to detect and manage arrhythmias: an EHRA practical guide

Emma Svennberg (1)¹, Fleur Tjong², Andreas Goette^{3,4}, Nazem Akoum⁵, Luigi Di Biaise⁶, Pierre Bordachar⁷, Giuseppe Boriani⁸, Haran Burri⁹, Giulio Conte¹⁰, Jean-Claude Deharo^{11,12}, Thomas Deneke¹³, Inga Drossart^{14,15}, David Duncker¹⁶, Janet K. Han¹⁷, Hein Heidbuchel^{18,19}, Pierre Jais²⁰, Marcio Jansen de Oliviera Figueiredo²¹, Dominik Linz²², Gregory Y.H. Lip^{23,24}, Katarzyna Malaczynska-Rajpold²⁵, Manlio Márquez²⁶, Corrette Ploem²⁷, Kyoko Soejima²⁸, Martin K. Stiles²⁹, Eric Wierda³⁰, Kevin Vernooy³¹, Christophe Leclercq³²

Consensus statement

Systematic screening by intermittent ECG^a is beneficial to detect AF in individuals aged >75 years

Opportunistic screening for AF may be beneficial in patients aged ≥65 years without comorbidities or <65 years with comorbidities

PPG-based or ECG-based devices are preferred to pulse palpation for AF screening

In systematic screening for AF, PPGbased or ECG-based devices can be used

If PPG screening is indicative of AF, an ECG-based method should be used to confirm the diagnosis of AF

- If AF is diagnosed during screening, patients should be informed, appraised for OAC treatment, and AF risk factors managed
- Screening for AF at multiple time points or over a prolonged time should be preferred over single time-point screening to increase the diagnostic yield regardless of

symptoms

The term 'screening-detected AF' should be used for AF diagnosed in a screening setting and the diagnosis should be confirmed by a physician

Svennberg E et al. Europace 2022

- Sensor-based light source & photodetector
- Measures changes in tissue blood volume based on reflected light
- Generates pulse waveform
- Heart <u>rate</u> is derived
- Abnormal heart *rhythm* can be detected by embedded algorithms

- Electrode-based
- Generates an electrocardiographic (ECG) tracing
- Allows direct analysis/diagnosis of heart <u>rhythm</u>

Can be diagnostic

 Clinician oversight is required for rhythm confirmation

Svennberg E et al. Europace 2022

Strategy	Definition	Examples
Opportunistic screening	Screening performed as a part of clinical contacts for any other reason than screening	 During a routine GP consultation Including during cardiovascular risk factor management
		 Screening of pharmacy customers Screening during vaccination appointments In contact with healthcare personnel where pulse palpation might be performed
Systematic screening	Screening programme performed continuously ir- respective of medical contacts or need	 Population-based screening programme Systematic screening during health campaigns
Screening in risk groups	Screening performed in individuals who sustained a prior stroke or transient ischaemic attack	 In-hospital screening Monitoring post-discharge

From AF ESC guidelines 2020

From Jones NR et al., Europace 2020

ICD tracing

Smartwatch ECG

« AF » detected by CIEDs (AHRE) and risk of stroke

Author	# pts (Setting)	Risk
Glotzer Circulation , 2003	312 (SSS)	Death or stroke x 2.5
Capucci Clinical Research in Cardiology, 2020	725 (PAF)	AT/AF > 24 h \rightarrow risk of embolism x 3.1
Glotzer Circ Arrythm Electrophysiol, 2009	2486 (≥1 RFS)	Daily AF burden > 5.5 h in the 30 previous days \rightarrow risk of stroke x 2
Ziegler Stroke, 2010	163 (Stroke)	New AF in 28% of pts with stroke
Healey New Engl J Med, 2016	2580 (>65, HTN)	Risk of stroke or embolism x 2.5
Shanmugan Europace, Feb 2012	560 (CRT)	AF burden > 3.8 h \rightarrow increased risk of TE

Suggested treatment algorithm for management of patients with AHREs. Adapted from Kirchhof et al.⁷⁰

Camm et al., Europace 2017

The IMPACT study

DT Martin et al., EHJ 2015

Primary events: first stroke, systemic embolism, or major bleeding (intention-to-treat analysis)

N = 2718 patients

DT Martin et al., EHJ 2015

Temporal relationship between daily atrial tachyarrhythmia burden and clinical thromboembolism

DT Martin et al., EHJ 2015

Non-vitamin K antagonist Oral anticoagulants in patients with Atrial High rate episodes (NOAH-AFNET 6) trial

Kirchhof P et al. Am Heart J. 2017 Aug; 190: 12–18

N=2600

Apixaban for the Reduction of Thrombo-Embolism in Patients With Device-Detected Sub-Clinical Atrial Fibrillation (ARTESiA) trial

Aix_{*}Marseille

Lopes R et al. Am Heart J 2017;189:137-45.

Progression of atrial high-rate episode burden (left panel) and stroke rates according to AHRE daily burden and CHA₂DS₂-VASc score (right panel)

^aThe higher the burden at diagnosis, the greater the incidence of progression in the next 6 months and thereafter. ^bStroke rates above the threshold for OAC are shown in red.

©ESC

www.escardio.org/guidelines

2020 ESC Guidelines for the diagnosis and management of atrial fibrillation (European Heart Journal 2020-doi/10.1093/eurheartj/ehaa612)

	Low risk CHA ₂ DS ₂ -VASc 0 (m) or 1 (f)	Single risk factor CHA2DS2-VASc 1 (m) or 2 (f)	High risk CHA₂DS₂-VASc ≥2 (m) or ≥3 (f)
Short, rare AHREs/SCAF low daily burden	An "inno	cent bystander"	Observe for: • Increase in AHREs/SCAF burden or clinical AF development
Longer AHREs/SCAF (≥1 h to <24 h) especially if high burden Long AHREs/SCAF (≥ 24 h) especially if high monthly burden	Observe for: • Increase in AHR clinical AF develo • Change in individ	Es/SCAF burden or opment dual stroke risk	Consideration for OAC use in selected patients at high/very high risk of stroke (where there are no doubts on AF diagnosis at device tracings analysis) when a positive net clinical benefit can be anticipated (shared decision-making

10,212 CIED patients 24–45% AHRE

			No OAC Prescribed			OAC Prescribed		
			-		. т	<u> </u>		
Device-Detected	Total		N	o OAC*	OAC*			
AF Burden	n/N (%)	IR (95% CI)		n/N (%)	IR (95% CI)	n/N (%) IR (95% Cl)		P Value†
AF >6 min‡								
Stroke	72/2101 (3.4)	9.9	(7.8–12.4)	66/1829 (3.6)	10.3 (8.1–13.1)	6/272 (2.2)	6.6 (2.9–14.6)	0.28
Death	587/2101 (27.9)	92.5 (85.3–100.3)		518/1829 (28.3)	93.3 (85.6–101.7)	69/272 (25.4)	87.1 (68.6–110.3)	0.60
AF >1 h‡								
Stroke	58/1712 (3.4)	9.8	(7.6–12.7)	51/1439 (3.5)	10.2 (7.8–13.5)	7/273 (2.6)	7.7 (3.7–16.2)	0.50
Death	503/1712 (29.4)	99.4 (91.1–108.5)		429/1439 (29.3)	100.4 (91.3–110.3)	74/273 (27.1)	94.4 (75.1–118.5)	0.63
AF >6 h‡								
Stroke	47/1279 (3.7)	10.7	(8.1–14.3)	41/1016 (4.0)	11.7 (8.6–15.8)	6/263 (2.3)	6.9 (3.1–15.5)	0.23
Death	395/1279 (20.9)	106.1	(96.1–117.1)	324/1016 (31.9)	108.7 (97.5–121.2)	71/263 (27.0)	95.8 (75.9–120.9)	0.34
AF >24 h‡								
Stroke	35/818 (4.3)	12.5	(9.0–17.4)	31/594 (5.2)	14.9 (10.5–21.2)	4/224 (1.8)	5.6 (2.1–14.8)	0.04
Death	297/818 (36.3)	129.0	(115.1–144.5)	234/594 (39.4)	139.3 (122.5–158.3)	63/224 (28.1)	101.1 (79.0–129.4)	0.02
		L						

AC Perino et al. Circulation 2019

Recommendations	Class ^a	Level ^b
 In patients with AHRE/subclinical AF detected by CIED or insertable cardiac monitor, it is recommended to conduct: Complete cardiovascular evaluation with ECG recording, clinical risk factors/comorbidity evaluation, and thrombo-embolic risk assessment using the CHA₂DS₂-VASc score.⁴⁶⁹ Continued patient follow-up and monitoring (preferably with the support of remote monitoring) to detect progression to clinical AF, monitor the AHRE/subclinical AF burden (especially transition to ≥24 h), and detect changes in underlying clinical conditions.⁴⁶⁹ 	I	© ESC 2020

Clinical outcomes in systematic screening for atrial fibrillation (STROKESTOP): a multicentre, parallel group, unmasked, randomised controlled trial

Emma Svennberg, Leif Friberg, Viveka Frykman, Faris Al-Khalili, Johan Engdahl*, Mårten Rosenqvist*

≥2 FA 10-29 s

The Lancet, 2021

Clinical outcomes in systematic screening for atrial fibrillation (STROKESTOP): a multicentre, parallel group, unmasked, randomised controlled trial

Emma Svennberg, Leif Friberg, Viveka Frykman, Faris Al-Khalili, Johan Engdahl*, Mårten Rosenqvist*

	Randomly assi	gned groups	Within the invited to screening group		
	Invited to screening (n=13 979)	Control group (n=13996)	Participants (n=7165)	Non- participants (n=6814)	p value*
Demographic and socio	economic factor	s			
Age, years	76-0 (75-5-76-6)	76-0 (75-5-76-6)	75·8 (75·3–76·3)	76-2 (75-7–76-8)	<0.0001
Women	7637 (54.6%)	7636 (54-6%)	3863 (53.9%)	3774 (55·4%)	0.081
living alone	7125 (51.0%)	7095 (50-7%)	3222 (45.0%)	3903 (57·3%)	<0.0001
3orn outside of Sweden	2865 (20-5%)	2857 (20-4%)	1076 (15.0%)	1789 (26.3%)	<0.0001
ncome in highest quartile	3552 (25-4%)	3522 (25·2%)	2256 (31.5%)	1296 (19.0%)	<0.0001
Jniversity or college education	3964 (28-4%)	3937 (28.1%)	2465 (34-4%)	1499 (22-0%)	<0.0001
Alcohol index†	352 (2.5%)	378 (2.7%)	88 (1.2%)	264 (3.9%)	<0.0001
Medical history					
CHA2DS2VASC‡ score	3.5 (1.3)	3.5 (1.3)	3.3 (1.1)	3.7 (1.4)	<0.0001
schaemic stroke, transient ischaemic attack, or systemic embolism	1557 (11·1%)	1513 (10.8%)	634 (8-8%)	923 (13·5%)	<0.0001
Heart failure	1045 (7.5%)	1098 (7.8%)	341 (4.8%)	704 (10.3%)	<0.0001
Hypertension	4963 (35-5%)	4980 (35-6%)	2262 (31.6%)	2701 (39.6%)	<0.0001
/ascular disease§	1632 (11-7%)	1686 (12-0%)	649 (9.1%)	983 (14·4%)	<0.0001
Diabetes	2115 (15.1%)	2107 (15-1%)	829 (11.6%)	1286 (18-9%)	<0.0001
Chronic kidney disease	303 (2.2%)	356 (2.5%)	77 (1·1%)	226 (3·3%)	<0.0001
Cancer¶	1767 (12.6%)	1864 (13·3%)	898 (12·5%)	869 (12-8%)	0.70
Dementia	465 (3·3%)	408 (2.9%)	72 (1·0%)	393 (5.8%)	<0.0001
Drugs dispensed within	preceding 6 mo	nths			
Oral anticoagulant	1282 (9-2%)	1313 (9.4%)	574 (8.0%)	708 (10.4%)	<0.0001
Aspirin	3525 (25-2%)	3702 (26.5%)	1634 (22-8%)	1891 (27-8%)	<0.0001
3 blocker	4752 (34.0%)	4764 (34.0%)	2154 (30·1%)	2598 (38·1%)	<0.0001
ACE inhibitor or angiotensin receptor blocker	5476 (39·2%)	5361 (38-3%)	2632 (36-7%)	2844 (41.7%)	<0.0001
Statin	4183 (29-9%)	4238 (30-3%)	2042 (28.5%)	2141 (31-4%)	<0.0001

The Lancet, 2021

Clinical outcomes in systematic screening for atrial fibrillation (STROKESTOP): a multicentre, parallel group, unmasked, randomised controlled trial

Emma Svennberg, Leif Friberg, Viveka Frykman, Faris Al-Khalili, Johan Engdahl*, Mårten Rosenqvist*

Primary endpoint:

Ischaemic or haemorrhagic stroke, systemic embolism, major bleeding leading to hospitalisation, or death from any cause in all randomly assigned individuals (regardless of participation)

The Lancet, 2021

Implantable loop recorder detection of atrial fibrillation to prevent stroke (The LOOP Study): a randomised controlled trial

Jesper H Svendsen, Søren Z Diederichsen, Søren Højberg, Derk W Krieger, Claus Graff, Christian Kronborg, Morten S Olesen, Jonas B Nielsen, Anders G Holst, Axel Brandes, Ketil J Haugan, Lars Køber

The LOOP Study, an investigator-initiated Randomized Controlled Trial

- Participants identified via registries, recruited at 4 centres in 3 of 5 Danish regions
- Inclusion criteria: Age ≥70 yrs and ≥1 of hypertension, diabetes, heart failure, previous stroke
- Exclusion criteria: AF, pacemaker, anticoagulation, or contraindication to anticoagulation
- Eligible participants were randomized 1:3 to ILR vs control

ILR group

Received Implantable Loop Recorder (Reveal LINQ[™], Medtronic) with continuous remote monitoring

- AF episodes were adjudicated by ≥ 2 senior cardiologist
- AF episodes ≥6 min gave indication for oral anticoagulation

The Lancet, 2021

Control group

Received usual care

The Lancet, 202

Methods

The LOOP Study, an investigator-initiated Randomized Controlled Trial

- Participants identified via registries, recruited at 4 centres in 3 of 5 Danish regions
- Inclusion criteria: Age ≥70 yrs and ≥1 of hypertension, diabetes, heart failure, previous stroke
- Exclusion criteria: AF, pacemaker, anticoagulation, or contraindication to anticoagulation
- Eligible participants were randomized 1:3 to ILR vs control

Deseline shere staristics	ILR	Control
Baseline characteristics	n=1501	n=4503
Sex		
Female	702 (47.2)	2128 (47.3)
Male	792 (52.8)	2375 (52.7)
Age, years	74.7 ± 4.1	74.7 ± 4.1
Comorbidities		
Hypertension	1378 (91.8)	4066 (90.3)
Diabetes	422 (28.1)	1288 (28.6)
Heart failure	67 (4.5)	199 (4.4)
Previous stroke	262 (17.5)	794 (17.6)
CHA ₂ DS ₂ -VASc score	4 [3, 4]	4 [3, 4]
Medication		
Beta blockers	354 (23.6)	1172 (26.0)
Calcium channel blockers	562 (37.4)	1684 (37.4)
Renin-angiotensin inhibitors	991 (66.0)	2999 (66.6)
Statins	879 (58.6)	2621 (58.2)
Platelet inhibitors	702 (46.8)	2204 (48.9)
Systolic blood pressure, mmHg	150.6 ± 19.2	149.8 ± 19.5
Diastolic blood pressure, mmHg	84.7 ± 11.1	83.9 ± 11.3
Pulse rate, beats/min	71.6 ± 12.1	71.3 ± 12.5
Body mass index, kg/m2	27.8 ± 4.7	27.6 ± 4.5
eGFR, mL/min	76 ± 19.2	75.4 ± 19.4

The Lancet, 2021 • •

Results – Primary outcome

The primary outcome occurred in 318 participants (315 stroke, 3 systemic arterial embolism); 67 (4.5%) in the ILR group <u>vs.</u> 251 (5.6%) in the Control group

HR 0.80; 95% CI 0.61-1.05; P=0.11

ESC CONGRESS 2021

THE DIGITAL EXPERIENCE

Recommendation	Class ^a	Level ^b	
Opportunistic screening for AF by pulse taking or ECG rhythm strip is recommended in patients ≥65 years of age.	I	В	?
It is recommended to interrogate pacemakers and implantable cardioverter defibrillators on a regular basis for AHRE.	I	В	? ARTESIA / NOAH AFNET
Systematic ECG screening should be considered to detect AF in individuals aged ≥75 years, or those at high risk of stroke.	lla	в	\mathbf{v}

Svennberg E et al. Europace 2022

université