

COMITÉ D'ORGANISATION

Jean-Pierre CEBRON Maxime GUENOUN Frédéric FOSSATI Arnaud LAZARUS Nicolas LELLOUCHE Jacques MANSOURATI Jérôme TAÏEB

COURSE DIRECTORS

Jean-Paul ALBENQUE Sonia AMMAR BUSCH Clement BARS Isabel DEISENHOFER Franck HALIMI Julien SEITZ

TRUCS ET ASTUCES IMPLANTATION CRT CAS 3: SONDE À VIS SINUS CORONAIRE ATTAIN STABILITY QUAD

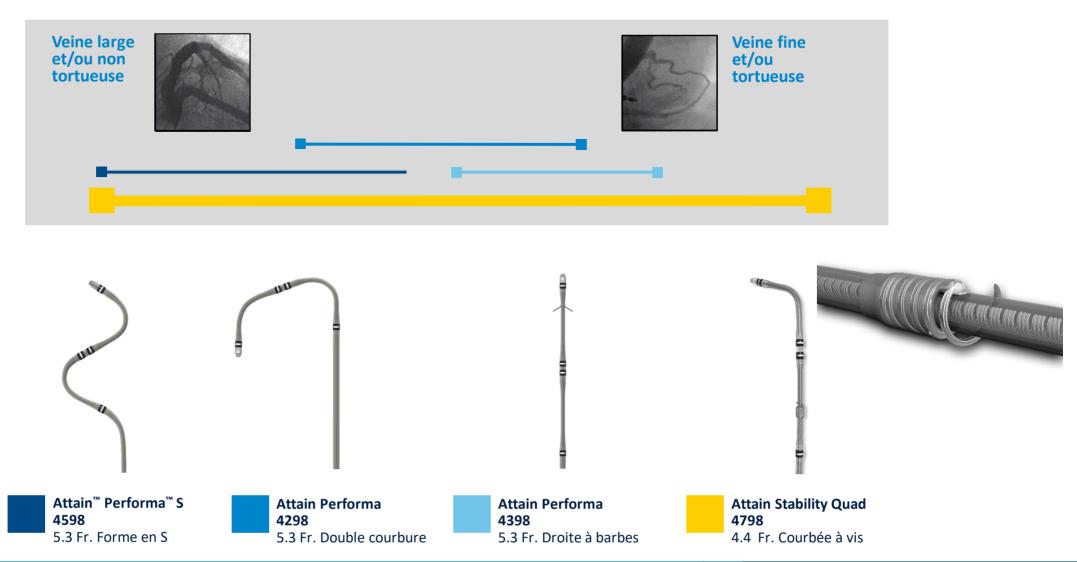
Attain Stability Quad™ MRI SureScan[™] Sonde VG à fixation active Référence 4798

Session CRT Congrès Electra – 20 Mai 2022

VUE D'ENSEMBLE DE LA SONDE STABILITY MANIPULATION DANS LE RESEAU VEINEUX

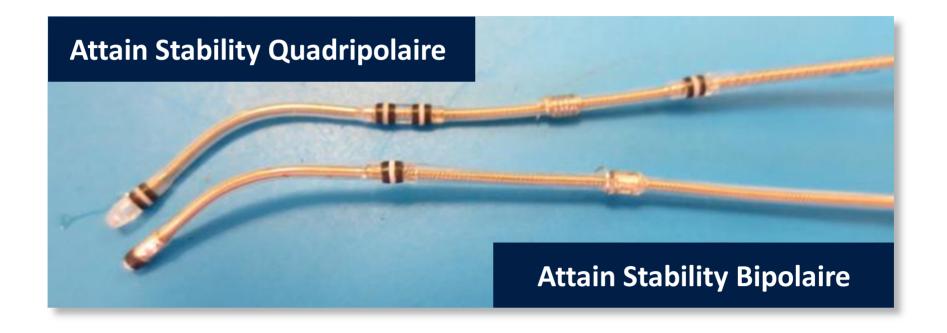
IMPLANTATION

EXTRACTION


PRECISE
PLACEMENT.
SECURE
FIXATION.

Attain Stability[™] Quad
MRI SureScan[™] Active Fixation LV Lead

UNE SONDE POUR CHAQUE ANATOMIE

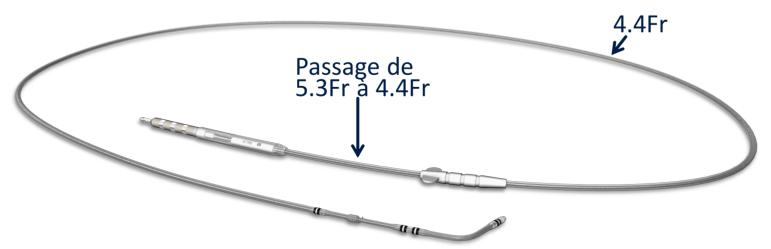


DESIGN DE L'HÉLICE

Vis de fixation située entre VG3 et VG4 (31mm du bout de sonde, 33mm sur la bipolaire) Même courbure que la Stabilty bipolaire (112 degrés)



DESIGN DE L'HÉLICE


Butée mécanique

- Evite le pincement de la veine en cas de survissage.
- Hélice exposée à 270 degrés (3/4 de tour)

CORPS DE SONDE

	Attain Performa	Attain Stability Quad
Diamètre du corps de sonde	5.3Fr	4.4Fr

Le passage de 5.3Fr à 4,4Fr permet d'optimiser la rotation la sonde lors du vissage

La diamètre des électrodes est identique au Performa Quad (5.1Fr) 2,5cm à 5.3Fr puis passage à 4.4Fr sur les 6cm suivants.

VUE D'ENSEMBLE DE LA SONDE STABILITY MANIPULATION DANS LE RESEAU VEINEUX

IMPLANTATION

EXTRACTION

PRECISE
PLACEMENT.
SECURE
FIXATION.

Attain Stability™ Quad

MRI SureScan™ Active Fixation LV Lead

SÉCURITÉ PATIENT

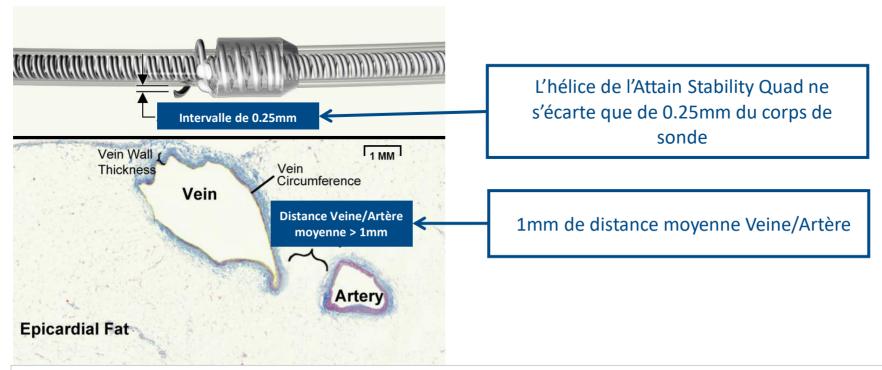


TABLE 2. Summary of left ventricular coronary veins in human hearts (n = 6)

		AIV (n = 6)	LMV (n = 5)	PVLV (n = 6)	$PIV^* (n = 6)$
Average distance to nearest artery $(mm)^{\dagger}$	Base Mid Apex	3.22 ± 1.51 3.84 ± 1.90 3.74 ± 1.36	3.11 ± 2.17 2.37 ± 1.83 2.89 ± 2.02	2.47 ± 1.45 2.36 ± 0.72 2.67 ± 1.17	2.14 ± 1.25 1.43 ± 0.23 1.53 ± 0.53

AIV, anterior interventricular vein; LMV, left marginal vein; PVLV, posterior vein of the left ventricle; PIV, posterior interventricular vein.

¹Anderson SE, Hill AJ, Laizzo PA. Microanatomy of Human Left Ventricular Coronary Veins. Anat Rec (Hoboken). 2009;292:23-28

SÉCURITÉ PATIENT

RELECTRA MARINE

4X LA MARGE DE SÉCURITÉ ENTRE LA VEINE ET L'ARTÈRE

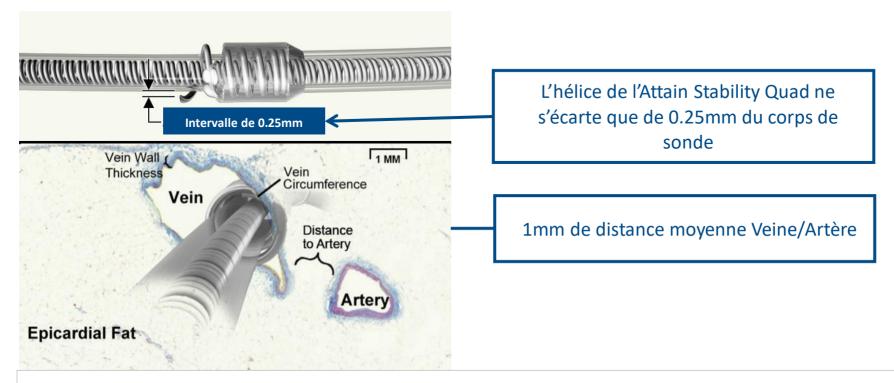
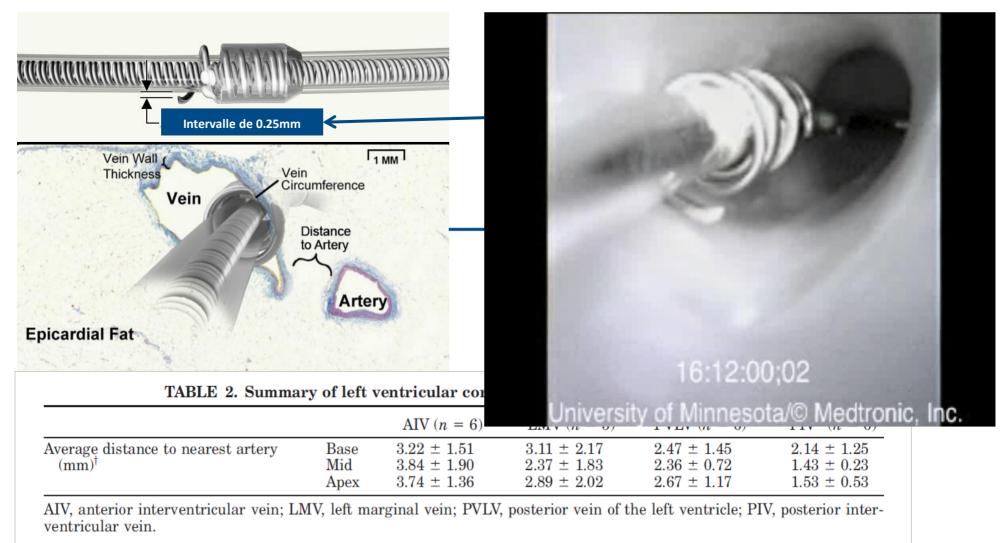


TABLE 2. Summary of left ventricular coronary veins in human hearts (n = 6)


		AIV (n = 6)	LMV (n = 5)	PVLV (n = 6)	$PIV^* (n = 6)$
Average distance to nearest artery $(mm)^{\dagger}$	Base Mid Apex	3.22 ± 1.51 3.84 ± 1.90 3.74 ± 1.36	3.11 ± 2.17 2.37 ± 1.83 2.89 ± 2.02	2.47 ± 1.45 2.36 ± 0.72 2.67 ± 1.17	2.14 ± 1.25 1.43 ± 0.23 1.53 ± 0.53

AIV, anterior interventricular vein; LMV, left marginal vein; PVLV, posterior vein of the left ventricle; PIV, posterior interventricular vein.

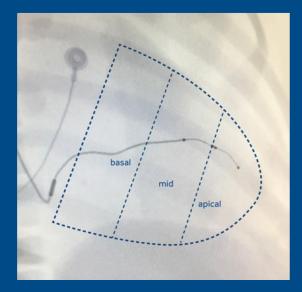
¹Anderson SE, Hill AJ, Laizzo PA. Microanatomy of Human Left Ventricular Coronary Veins. Anat Rec (Hoboken). 2009;292:23-28

SÉCURITÉ PATIENT

4X LA MARGE DE SÉCURITÉ ENTRE LA VEINE ET L'ARTÈRE

¹ Anderson SE, Hill AJ, Laizzo PA. Microanatomy of Human Left Ventricular Coronary Veins. Anat Rec (Hoboken). 2009;292:23-28

POSITIONNER LA SONDE AU MEILLEUR ENDROIT



LES SONDES VG QUAD

Passive Fixation + Quadripolar Technology

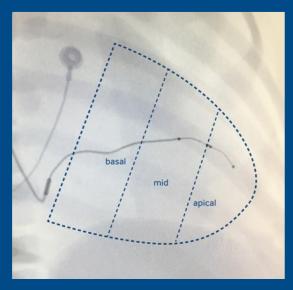
Plus d'électrodes pour stimuler à partir d'emplacements alternatifs

Nécessite souvent un calage pour la stabilité, limitant le placement anatomique de la sonde

RAO 30 fluoroscopic image of Attain™ Performa™

¹ Yee R, et al. *Heart Rhythm*. 2014;11:1150-1155.

POSITIONNER LA SONDE AU MEILLEUR ENDROIT



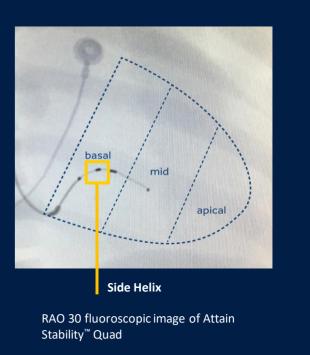
LES SONDES VG QUAD

Passive Fixation + Quadripolar Technology

Plus d'électrodes pour stimuler à partir d'emplacements alternatifs

Nécessite souvent un calage pour la stabilité, limitant le placement anatomique de la sonde

RAO 30 fluoroscopic image of Attain™ Performa™


STABILITY ™ QUAD

SONDE VG ATTAIN

Active Fixation + Quadripolar Technology

Placez la sonde avec précision et en toute sécurité sans avoir besoin de caler

Flexibilité dans le placement anatomique des sondes

¹ Yee R, et al. *Heart Rhythm*. 2014;11:1150-1155.

VUE D'ENSEMBLE DE LA SONDE STABILITY MANIPULATION DANS LE RESEAU VEINEUX

IMPLANTATION

EXTRACTION

PRECISE
PLACEMENT.
SECURE
FIXATION.

Attain Stability[™] Quad
MRI SureScan[™] Active Fixation LV Lead

IMPLANTATION

ATTAIN STABILITY™ QUAD

IMPLANT PROCEDURE

ATTAIN STABILITY™ QUAD IDE ETUDE CLINIQUE IMPLANTATIONS AVEC UN TAUX DE SUCCÈS ÉLEVÉ ET UN TAUX DE DÉPLACEMENT FAIBLE¹

Study Endpoint Periode	6 mois	
Taux de succès d'implantations	96.8% (426/440)	
Probabilité Sonde VG sans complications	97.6%	
Déplacement	0.7%	
Perforation Sonde VG	0.0%	
Moyenne 6 mois Seuil de stimulation VG (at 0.5 ms)	1.1 ± 0.68 V	

Performance of a novel active fixation quadripolar left ventricular lead for cardiac resynchronization therapy: Attain Stability Quad Clinical Study results

```
Kevin P. Jackson MD<sup>1</sup> | Svein Faerestrand MD, PhD<sup>2</sup> | Francois Philippon MD<sup>3</sup> | Raymond Yee MD<sup>4</sup> | Melissa H. Kong MD<sup>5</sup> | Axel Kloppe MD<sup>6</sup> | Maria Grazia Bongiorni MD<sup>7</sup> | Scott F. Lee MD<sup>8</sup> | Robert C. Canby MD<sup>9</sup> | Erika Pouliot MS<sup>10</sup> | Mireille M. E. van Ginneken PhD<sup>11</sup> | George H. Crossley MD<sup>12</sup> |
```

Study Objective

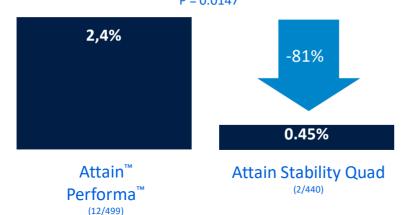
Déterminer la sécurité et l'efficacité de la sonde VG à fixation active Attain Stability Ouad 4798.

Study Design

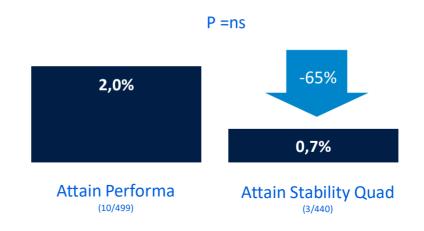
- Étude clinique prospective, non randomisée, multisite, d'exemption de dispositif expérimental (IDE)
- N = 440 patients ont subi une procédure primo implantation de sonde VG
- 50 centres dans 10 pays en Amérique du Nord, en Europe et en Asie
- Les patients ont été suivis à 3, 6 et tous les 6 mois après l'implantation

Study Results

Sécurité et efficacité démontrées par une probabilité sans complication de la sonde VG de 97,6 % et des seuils faibles et stables.¹


¹Crossley GH, et al. Performance of a Novel Active Fixation Quadripolar Left Ventricular Lead for Cardiac Resynchronization Therapy — Attain Stability Quad Clinical Study Primary Results. Presented at HRS 2019 (S-PO02-088).

DEPLACEMENT DE SONDE VG ATTAIN STABILITY™ QUAD VS. PERFORMA™


Performance of a novel active fixation quadripolar left ventricular lead for cardiac resynchronization therapy: Attain Stability Quad Clinical Study results

Kevin P. Jackson MD 1 $^{\circ}$ | Svein Faerestrand MD, PhD 2 | Francois Philippon MD 3 | Raymond Yee MD 4 | Melissa H. Kong MD 5 | Axel Kloppe MD 6 | Maria Grazia Bongiorni MD 7 | Scott F. Lee MD 8 | Robert C. Canby MD 9 | Erika Pouliot MS 10 | Mireille M. E. van Ginneken PhD 11 | George H. Crossley MD 12 $^{\circ}$

Déplacement durant le découpage^{1,2}

Déplacement (6 mois)^{1,2}

¹ Crossley GH, et al. Heart Rhythm. Performance of a novel left ventricular lead with short bipolar spacing for cardiac resynchronization therapy: 2015;12:751-758.

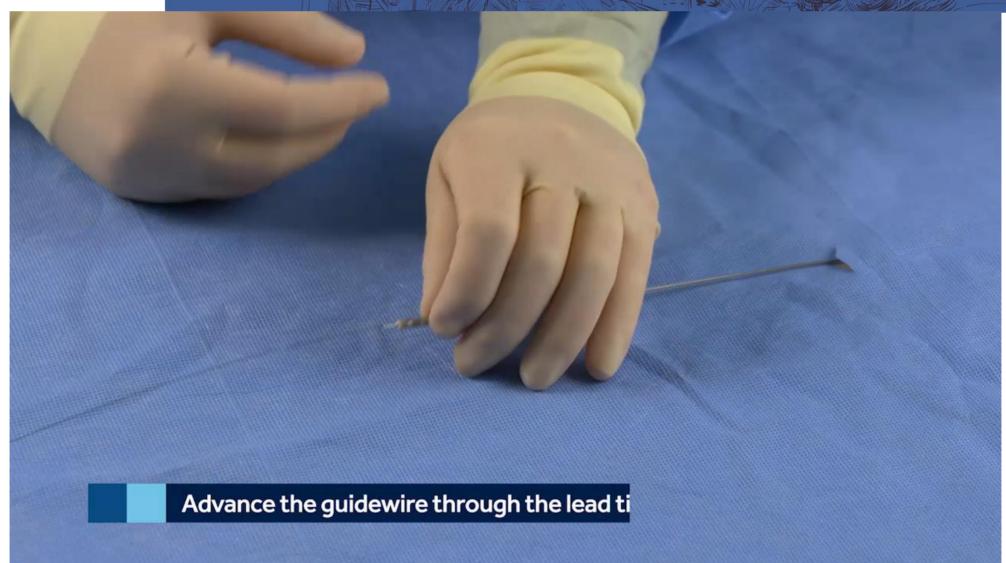
² Crossley, et al. Performance of a Novel Active Fixation Quadripolar Left Ventricular Lead for Cardiac Resynchronization Therapy. Presented at HRS 2019 (poster). Attain Stability™ Quad MRI SureScan™ Active Fixation LV Lead Overview

VUE D'ENSEMBLE DE LA SONDE STABILITY MANIPULATION DANS LE RESEAU VEINEUX

IMPLANTATION

EXTRACTION

PRECISE
PLACEMENT.
SECURE
FIXATION.


Attain Stability™ Quad

MRI SureScan™ Active Fixation LV Lead

EXTRACTION DE LA SONDE

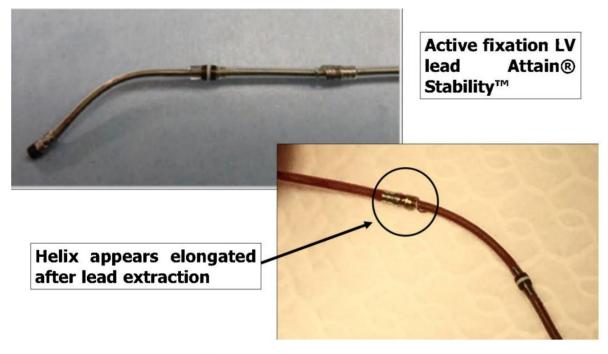
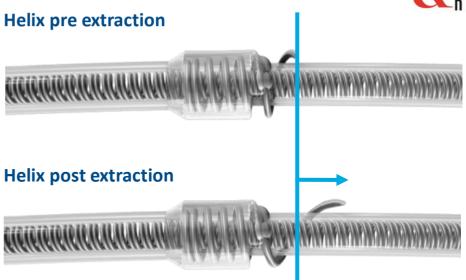



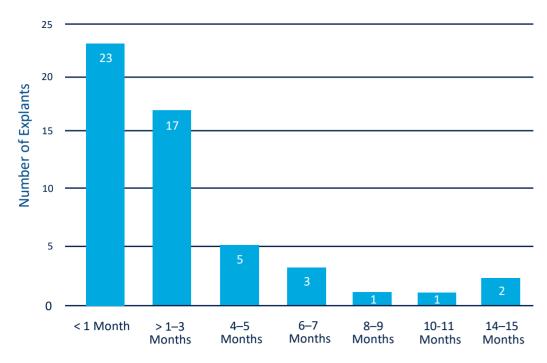
Fig. 1 – Attain[®] StabilityTM lead before the implant and after the extraction.²

- Quand on tire sur la sonde, l'hélice s'allonge pour se libérer du tissu
- L'hélice s'allonge à partir d'une force de 850gr, pour retirer une sonde VG il faut environ une force de 1kg .¹

¹ Alder SW, et al. A novel active fixation left ventricular lead: extraction experience in an animal model. Presented at HRS 2013 (P004-01, 10.5);

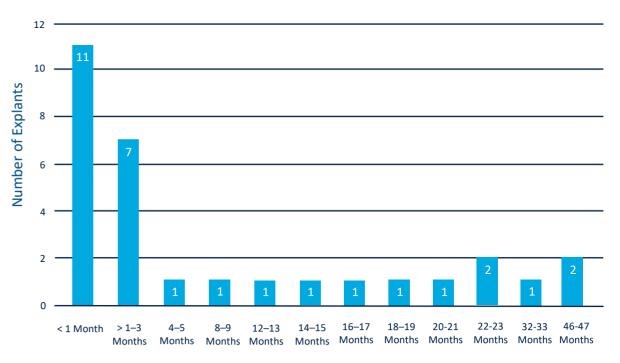
Denver, CO.

²Rosario Foti, EHRA 2019.


REPORTED EXTRACTIONS

AS OF DECEMBER 2019¹

ATTAIN STABILITY™ QUAD


52 REPORTED EXTRACTIONS LONGEST 14–15 MONTHS

Implant Duration Prior to Explants

ATTAIN STABILITY BIPOLAR

30 REPORTED EXTRACTIONS LONGEST 46-47 MONTHS

Implant Duration Prior to Explants

¹ Medtronic data on file. MDT30195552.

ATTAIN STABILITY EXTRACTION & PERFORATION

En 2019

- 82 extractions avec succès
- Traction simple
- Pas de perforations observées

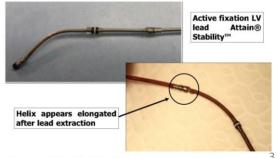


Fig. 1 - Attain® StabilityTM lead before the implant and after the extraction.

Lead Extraction Case ¹	Lead Extraction Case ²	Lead Extraction Case ³	Lead Extraction Case ⁴	Efficacité et sécurité Extraction Case ⁵	Animal Extraction Study ⁶
 1 Successful extraction 8.2 month implant* "no documented dissection or damage to the CS" 	 1 Successful extraction After 7 month Une semaine plus tard un nouveau CRTD a été implanté 	 1 Successful extraction 7 mois après implantation même force nécessaire que pour les autres sondes passives ventriculaires gauches, proches (0.5–1 kg) Nouvelle Stability implantée 	 1 Successful extraction 4 ans après implantation Pas d'épanchement péricardique, une semaine plus tard un nouveau CRTD a été implanté. 	 1 Successful extraction 8 mois après implantations Pas de dissection, ni de SC endommagée. Similaire à une sonde vg Classique. 	 Sheep model 17 Successful extractions (10 active fixation, 7 control leads) 26, 52, 118 weeks after implants All leads extracted under simple traction (< 1.0 kg) No Perforations

[†]Implants ≥ 1 month

^{*}Included in MAUDE database

²Rosario Foti, EHRA 2019.

³Ziacchi et al. *Indian Heart Journal*, Oct 2015.

⁴Barletta, EHRA 2019

⁵Bontempi, et al. *Europace* (2016) 18, 301-303.

 $^{^{\}rm 6}$ $\,$ 2-years extractability of novel LV active lead quad Adler, Pace, 2017

CONCLUSION

SONDE VG - ATTAIN STABILITY QUAD

Flexibilité

S'adapte à toutes les anatomies

Précision

Stimule au site souhaité

Performance

Stabilité après l'implantation

Session CRT Congrès Electra – 20 Mai 2022

